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Abstract. Non-rigid and partial 3D model retrieval are two significant and chal-
lenging research directions in the field of 3D model retrieval. Little work has
been done in proposing a hybrid shape descriptor that works for both retrieval
scenarios, let alone the integration of the component features of the hybrid shape
descriptor in an adaptive way. In this paper, we propose a hybrid shape descriptor
that integrates both geodesic distance-based global features and curvature-based
local features. We also develop an adaptive algorithm to generate meta similarity
resulting from different component features of the hybrid shape descriptor based
on Particle Swarm Optimization. Experimental results demonstrate the effective-
ness and advantages of our framework. It is general and can be applied to similar
approaches that integrate more features for the development of a single algorithm
for both non-rigid and partial 3D model retrieval.

1 Introduction

Non-rigid 3D model retrieval is a challenging research direction for the community
of 3D model retrieval. Compared to generic 3D model retrieval, partial similarity 3D
model retrieval is also more difficult and much less studied. Geodesic distance-based
global features have intrinsic advantages in characterizing non-rigid 3D models and also
have shown their superiority in recognizing deformable models, which has been demon-
strated by Smeets et al. [1] [2]. On the other hand, employing local features and Bag-of-
Words [3] framework has demonstrated its apparent advantages in dealing with partial
similarity retrieval, such as [4] [5]. Curvature is an important local feature and it is the
basis of several other important local features, such as Shape Index [6] and Curvedness
[6]. Motivated by this, our target is to utilize both geodesic distance-based global fea-
tures and curvature-based local features together with the Bag-of-Words framework to
develop a 3D shape retrieval algorithm that can be used for both non-rigid and partial
similarity retrieval. Geodesic distance-based and curvature-based features show differ-
ent properties and retrieval performances in recognizing non-rigid or partial 3D model
retrieval. To adaptively combine these two features, a meta similarity based on Particle
Swarm Optimization (PSO) [7] has been proposed to fuse their distance matrices. This
framework is general and can be extended to integrate different or more features to de-
velop other similar unified retrieval algorithms for both non-rigid and partial 3D model
retrieval.
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The paper is organized as follows. We briefly discuss the related work in Section 2.
Section 3 introduces the hybrid 3D shape descriptor. Section 4 presents our 3D model
retrieval algorithm, together with the method of weight assignment for the meta similar-
ity based on Particle Swarm Optimization. We give in detail the experiments in Section
5 and conclude the paper and list the future work in Section 6.

2 Related Work

During the past few years, geodesic distance-based, and local feature together with
Bag-of-Words framework based approaches have received much attention, especially
in dealing with the non-rigid and partial 3D model retrieval. Combining and integrating
heterogeneous features is also an important issue if we employ a hybrid shape descriptor
comprising several features. We give a brief review for these four topics as follows.

Geodesic Distance-Based Descriptors. Geodesic distance is an inelastic deformation
invariant distance metric, thus popular for the analysis and recognition of non-rigid
objects. Typically, the extracted geodesic distance-based feature for 3D is a geodesic
distance matrix (GDM) measuring the distances among a set of points sampled on the
surface of a 3D object. To deal with deformable 3D model retrieval, Smeets et al. [1]
proposed a modal representation method based on the Singular Value Decomposition
(SVD) of the GDM of a 3D model. They utilized several largest eigenvalues of a GDM
as the shape descriptor. In SHREC 2011 Non-rigid watertight shape retrieval track [2],
Smeets et al. further proposed a method by combing GDM and another method called
Scale Invariant Feature Transform (SIFT) for meshes (meshSIFT) and they achieved
the best retrieval performance among the nine participants.

Local Shape Descriptors. Paul et al. [8] presented a comparative evaluation of several
local shape descriptors. Koenderink and Doorn [6] proposed a curvature-based local
feature named Shape Index which measures the local topological/convexity geometry,
such as ridge, saddle, cup and cap and another local feature called Curvedness which
measures the amount of curvature. 3D shape spectrum [9] based on Shape Index distri-
bution was also proposed as the MPEG 3D shape feature standard.

Bag-of-Words Framework. Recently, the Bag-of-Words (BoW) framework has been
successfully applied into 3D model retrieval. It has demonstrated successful applica-
tions in either view-based (e.g. [10]) or geometry-based (e.g. [4], [5]) 3D model retrieval
and apparent advantages in partial similarity 3D model retrieval (e.g. [4], [5]), as well.
To reduce the computational cost for distance computation, Ohbuchi et al. [10] encoded
the SIFT features of a set of depth views of a 3D model into a histogram by utilizing the
BoW approach. Toldo et al. [4] extended the BoW framework from 2D to 3D to repre-
sent 3D components. 3D subparts resulting from segmentation are clustered to define a
3D vocabulary comparable to the 2D codewords. Lavoué [5] applied the BoW frame-
work to the Laplace-Beltrami spectrum features of a set of uniformly sampled points
on the surface of a 3D model by projecting the geometry onto the eigenvectors of the
Laplace-Beltrami operator and also achieved superior partial retrieval performance.

Meta Similarity. Employing several features together in 3D shape retrieval needs a so-
lution of integrating them properly to make them compliment each other to achieve the
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optimal performance. In the field of 3D model retrieval, compared to new shape descrip-
tors, this topic has received less attention and is also less studied, let alone the adaptive
approaches of weight assignment to generate the meta similarity. We can merge several
feature vectors directly or merge the distances resulting from different features, as well.
Akbar et al. [11] combined features extracted from surface and volume by assigning
the weights based on the properties of the two features and they tested on both merging
schemes. Unfortunately, the retrieval performance improvement is not apparent. Daras
et al. [12] investigated several factors that affect retrieval performance, such as feature
selection, dissimilarity metric, feature combination and weight optimization and they
suggested that more focus should be given to the efficient combination of low-level
descriptors rather than the investigation of the optimal 3D shape descriptor.

3 Hybrid 3D Shape Descriptor

In this section, to represent a 3D model we propose a hybrid shape descriptor composed
of a curvature-based local feature vector VC proposed by us and a geodesic-based global
feature vector VG, described as follows.

3.1 Curvature-Based Local Feature Vector: VC

Extracting local features are important for partial similarity 3D model retrieval. First,
we propose a curvature-based combined local shape descriptor for each vertex of a 3D
model and after that we apply the Bag-of-Words framework to generate the local shape
descriptor distribution as our proposed local feature vector VC. To extract the local shape
descriptor, we need to define its two basic components: local support region and local
features. We regard the adjacent vertices of a vertex as its local support region and
consider the following first three curvature-based local features.

(1) Curvature Index Feature. Curvature is an important feature to characterize the
local geometry. Based on curvature, Koenderink and Doorn [6] proposed Shape Index
and Curvedness. Curvature Index [8] further maps Curvedness values into a reason-
able range using a log function. For a vertex p, its Curvature Index CI is computed as
follows,

CI =
2
π

log(

√
K2

1 +K2
2

2
) (1)

where K1 and K2 are the two principal curvatures in the x and y directions respectively
at the point of vertex p.

(2) Curvature Index Deviation Feature. To measure the tendency of the Curvature
Index change in a local support region of a vertex, we compute the standard deviation
Curvature Index difference of the adjacent vertices of the vertex p,

δCI =

√
∑n

i=1 (CIi − C̃I)
n

(2)
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where CI1, CI2,. . .,CIn are the Curvature Index values of the adjacent vertices of p and
C̃I is the mean Curvature Index of all the adjacent vertices.

(3) Shape Index Feature. Shape Index [6] is a feature that has been applied into
generic 3D shape retrieval. Here, we utilize it within the Bag-of-Words framework for
non-rigid and partial 3D model retrieval. Its definition is as follows,

SI =
2
π

arctan(
K1 +K2

|K1 −K2| ) (3)

where K1 and K2 are the two principal curvatures in the x and y directions respectively
at the point of vertex p. SI ∈[-1,1].

(4) Combined Local Shape Descriptor. The three local features described above de-
pict the local properties in different aspects. To more comprehensively measure the local
information, a combined local shape descriptor F comprising the above three features
is devised,

F = (CI,δCI,SI) (4)

(5) Local Feature Vector Generation: Bag-of-Words. We regard the combined local
shape descriptor distribution of all the vertices of a 3D model, with respect to a set
of centers, as its local feature vector VC. Based on the Bag-of-Words framework, the
local feature vector generation process includes the following two steps: 1) Codebook
generation. We cluster the combined local shape descriptors of the vertices of all the
3D models in a 3D dataset into a set of class centers (codewords) O1,O2, . . . ,ONC based
on K-means algorithm, where NC is the number of codewords. In our experiments, L2
distance metric, NC=500 cluster centers and 100 maximum clustering iteration number
are experimentally determined. 2) Local feature vector formulation. Based on the
generated codebook (cluster centers), we count the distribution VC of the local shape
descriptors of all the vertices of a 3D model with respect to the codewords in terms of
maximum similarity,

VC = (h1,h2, · · · ,hNC), (5)

where hi is the percentage of the local shape descriptors whose closest codeword is
Oi. To find the closest codeword, Canberra distance metric [13] is utilized to mea-
sure the difference between two combined local shape descriptors Fi and Fj: dF =

1
n ∑n

l=1
|Fi(l)−Fj(l)|
|Fi(l)+Fj(l)| , where n is the dimension of Fi and Fj, dF ∈ [0,1].

3.2 Geodesic Distance-Based Global Feature Vector: VG

For non-rigid 3D model retrieval, by utilizing the eigenvalues of global geodesic dis-
tance matrix (GDM), Smeets et al. [1] [2] have achieved outstanding retrieval perfor-
mance. Global GDM considers the geodesic distances among all the sample points on
the surface of a 3D model to form a 2D square distance matrix. The eigenvalues of
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the GDM is comparable to the spectrum of a 3D shape, which shows superior perfor-
mance when dealing with non-rigid 3D model retrieval. Hybrid approaches by com-
bining global and local features like [14] have been verified to be an effective way to
develop a more comprehensive shape descriptor to further improve the retrieval per-
formance. Considering this, we also compute a global geodesic distance matrix-based
feature for a 3D model, especially for non-rigid 3D model retrieval.

(1) 3D Model Simplification. To reduce computational cost for geodesic distance-
based feature extraction, we simplify each model by adopting the mesh simplification
method proposed by Garland and Heckbert [15]. It iteratively contracts vertices pairs
under the control of quadric surface error. It is efficient and preserves the most important
features. In experiments, we simplify the models to make they contain the same number
(e.g. 1000 in our experiments) of vertices.

(2) Geodesic-Based Global Feature Vector Generation. We first compute the
geodesic distances based on the method in [16] among all the vertices of a simpli-
fied model to form a geodesic distance matrix GDM. Then we decompose the GDM
based on Singular Value Decomposition (SVD) and keep the first largest k (e.g. 50 in
our experiments) eigenvalues as the global feature vector VG,

VG = (e1,e2, · · · ,ek) (6)

where k is the threshold number of eigenvalues that we are interested in. Similarly,
Canberra distance (Section 3.1) is used to measure the distance between two VG.

4 Non-rigid and Partial 3D Model Retrieval Algorithm Based on a
Hybrid Shape Descriptor and Meta Similarity

4.1 Retrieval Algorithm

Given a query 3D model and a target 3D model database, we retrieve relevant models
from the target database. Our 3D model algorithm is based on the hybrid shape descrip-
tor presented in Section 3. The complete retrieval algorithm is as follows.

(1) Curvature-based local feature vector VC and local feature distance matrix MC

computation. For each query and target 3D model, we extract its curvature-based local
feature vector VC as described in Section 3.1. It is very efficient, so we consider all
the available vertices and use the original models directly. After that, we compute the
Canberra distance (Section 3.1) between the local feature vectors of a query model and
a target model to form the curvature-based local feature distance matrix MC.

(2) Geodesic distance-based global feature vector VG and global feature distance
matrix MG computation. Based on the algorithms presented in Section 3.2, we sim-
plify each query or target model to make it has 1000 vertices and keep the largest 50
eigenvalues as its global feature vector VG. Similarly, the Canberra distance between a
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query and a target model’s global feature vectors VG is computed to form the geodesic
distance-based global feature distance matrix MG.

(3) Meta distance matrix generation and ranking. We adaptively find the weights wC

and wG for the distance matrices MC and MG respectively to generate a meta distance
matrix M based on the approach in Section 4.2.

M = wC ∗MC +wG ∗MG (7)

where wC and wG are in the region of [0,1]. Finally, we sort all the models in the
database in ascending order based on their distances and output the retrieval lists ac-
cordingly. The two weights wC and wG are needed to be computed only once for each
target database which is always available in order to perform a retrieval. If the query
database is available, we use it directly as queries to compute the weight values, other-
wise, we use the target models as queries. In our experiments, we use the target models
directly in Section 5.1 and use the query database in Section 5.2.

4.2 Meta Similarity by Particle Swarm Optimization

The simplest method to find the optimal weights for different features is by performing
a brute-force search. We can uniformly sample the values by adopting a fixed step.
The drawback of the brute-force search is the high computational cost. For example,
in order to find a result with an accuracy of Δδ (e.g. 0.01) for N (e.g. 3) weights, we
have to sample at least at a step of Δδ (e.g. 0.01), which means ( 1

Δδ )
N−1 (e.g. 10000)

combinations. As such, the brute-force search is not the ideal method for finding the
optimal weights.

To efficiently find the optimal weights, we develop a weight assignment method
based on Particle Swarm Optimization (PSO) [7] which is a swarm intelligence opti-
mization technique by imitating the behavior of a flock of birds searching for a piece of
food in a region. Each bird learns from its neighboring birds and update itself based on
the position of the bird nearest to the food. Our PSO-based weight assignment for the
meta distance matrix generation is as follows.

(1) PSO Initialization. We initialize the number NP and positions of a set of search
particles {x= (wC,wG)} and then compute the private best for each particle and current
global best based on all the private bests. In experiments, we uniformly distribute the
search particles within its search region of {[0,1],[0,1]}. We regard the �NP/3� nearest
neighbors of a search particle as its neighborhood, based on which we compute its
private best. Finally, we also set the maximum search iterations Nt .

(2) Update Particles. We update the position of each particle by adopting a similar
strategy as [17],

x(i+ 1) = x(i)+ s · v(i), (8)

v(i+ 1) = ω ∗ v(i)+ c1 · r1 · (xp(i)− x(i))+ c2 · r2 · (xg(i)− x(i)). (9)

x(i) and v(i) are the position and velocity of a particle; the velocity update step s is
inversely proportional to the current iteration number i: s = Nt−i

Nt
+ c, where c is a con-

stant variable and in experiments we choose c to be 0.5. r1 and r2 are random variables
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between 0 and 1; xp and xg are the particle positions of private and global bests. c1 and
c2 are non-negative constants, typically c1=c2=2 [7]. The inertia-weight ω is a tradeoff
between the global and local search abilities. Bigger ω indicates more powerful global
search ability and less dependency on the initial locations of the search particles, while
smaller ω means finer search within a local area. Similar as [17], we linearly decrease
ω from 1.4 to 0 according to the iteration number i: ω = ωmin−ωmax

Nt
· i+ωmax, where

ωmax=1.4 and ωmin=0. The new position x(i+1) may be out of the search area, as such
we clamp it by subtracting (if larger than 1) or adding (if smaller than 0) 1 .

(3) Search Evaluation. Based on the new position of each particle, we assign the corre-
sponding weights wC and wG and compute the meta distance matrix based on Equation
(7) and thus the corresponding retrieval performance metrics, such as First Tier (FT)
and mean Normalized Discounted Cumulative Gain (NDCG) [18], and regard them as
PSO fitness value to evaluate the weight assignment result. After that, we update its
private best as well as the global best based on all the private bests.

(4) Result Verification. If the maximum iteration number Nt has been reached, we stop
and output the position of the current global best as the optimal weight assignment
result and also output the corresponding optimal meta distance matrix M and retrieval
performance metrics; otherwise, go to step (2) to continue the search. The complexity
of our POS-based weight assignment algorithm is O(NP +NP ·Nt).

5 Experiments

To investigate the performance of our algorithm in terms of non-rigid and partial 3D
model retrieval, we choose to use the following two benchmarks.

(1) SHREC’11-Non-rigid: the benchmark for the SHREC 2011 non-rigid 3D water-
tight models retrieval track [2]. It contains 600 watertight and deformable models, clas-
sified into 30 classes, each with 20 models.

(2) SHREC’07-Partial: the benchmark used in the SHREC 2007 partial matching track
[19]. The target dataset has 400 watertight models, divided into 20 classes, each with
20 models. The query dataset comprises 30 models by combining the parts of two or
more models of the target database.

To comprehensively evaluate the non-rigid 3D model retrieval results, we employ six
metrics [18] including Precision-Recall (PR), Nearest Neighbor (NN), First Tier (FT),
Second Tier (ST), Discounted Cumulative Gain (DCG) and Average Precision (AP).
We use the Normalized Discounted Cumulative Gain (NDCG) [18] metric to evaluate
the performance of partial retrieval results.

5.1 Non-rigid 3D Model Retrieval

Geodesic distance is invariant to model deformation, which makes it has advantages
in non-rigid 3D model retrieval. This means that we should increase its weight during
the retrieval. While, adding curvature-based features will probably further improve the
retrieval performance. However, it is non-trivial to find an optimal weight assignment
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(b) Hybrid shape descriptor and its components

Fig. 1. Precision-Recall performance comparison on the SHREC’11-Non-rigid benchmark

for these two features, let alone for more features. Thus, PSO-based algorithm is utilized
to train the weights. We set NP=10, Nt=20, and select First Tier as the PSO fitness value
to evaluate search results. Based on the algorithm in Section 4.2, we find the optimal
weights values: wC=0.349036, wG=0.650965. Optimal First Tier value is 0.864999.

Table 1. Other performance metrics comparison on the SHREC’11-Non-rigid benchmark

Methods NN FT ST DCG AP

Our 99.7 86.5 93.1 97.1 93.4
FOG 96.8 81.7 90.3 94.4 89.5
T-NoNorm-40Coef 95.5 67.2 80.3 89.7 78.1
BOGH 99.3 81.1 88.4 94.9 89.1
MLSF 98.7 80.9 87.9 94.8 88.2
Harris3DGeoMap32 56.2 32.5 46.6 65.4 43.2
PatchBOF 150 74.8 64.2 83.3 83.7 74.1

M C 83.7 58.8 77.2 83.7 69.7
M G 99.3 81.4 88.1 95.3 89.4

We compare with the approaches in the SHREC 2011 Non-rigid track which mainly
extract geodesic distance-based features, such as FOG, BOGH and Harris3DGeoMap32;
or adopt the Bag-of-Words framework and some other geometric features, like T-No-
Norm-40Coef, MLSF and PatchBOF. We also compare with the performances of the
two component features of our hybrid shape descriptor, that is, comparing the perfor-
mances of meta distance matrix M, curvature-based local feature distance matrix MC,
and geodesic distance-based global feature distance matrix MG. Figure 1 compares their
Precision-Recall performances while Table 1 lists their other performance metrics.
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As can be seen from Figure 1 (a) and Table 1, our hybrid shape descriptor and meta
similarity-based retrieval algorithm outperforms all the six participating approaches
which use the features and the Bag-of-Words framework that fall in the same cate-
gory as our approach. Based on the results shown in Figure 1 (b) and Table 1, we also
find that our approach apparently improves the retrieval performances, in terms of all
the six metrics, for non-rigid 3D model retrieval.

5.2 Partial Similarity 3D Model Retrieval

Unlike non-rigid model retrieval, in this case curvature-based local features will con-
tribute more for partial 3D model retrieval. Similarly, we optimize their weights based
on PSO after computing the curvature-based feature distance matrix MC and geodesic
distance-based feature distance matrix MG. We set NP=10 and Nt=20. Since NDCG
is used to evaluate the partial retrieval performance, we use the mean NDCG over all
the 400 models to evaluate search results. The optimal weights values are as follows:
wC=0.397384, wG=0.602614, while the optimal mean NDCG is 0.613296. Similar as
Section 5.1, the NDCG performance comparisons with the participants in the SHREC
2007 partial matching track [19] as well as other approaches mentioned in [18], and the
hybrid shape descriptor’s components are shown in Figure 2 (a) and (b), respectively.
Based on the comparison results in Figure 2, we can draw a similar conclusion as the
non-rigid retrieval experiments in Section 5.1 for the partial similarity retrieval.
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Fig. 2. NDCG performance comparison on the SHREC’07-Partial benchmark

6 Conclusions and Future Work

Non-rigid and partial 3D model retrieval are two important and challenging research
directions in the field of 3D model retrieval. While different approaches based on either
geodesic distance or some local features have been proposed to deal with either of the
above two retrieval problems, little work has been done in developing a hybrid shape
descriptor that works for both cases, especially in an adaptive way. We have found
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that geodesic distance-based global features and curvature-based local features have
advantages in non-rigid and partial 3D model retrieval, respectively. To utilize both
features and make them compliment each other, we develop a hybrid shape descriptor
comprising these two types of features and adaptively combine their feature distance
matrices to form a meta distance matrix based on Particle Swarm Optimization.

Experimental results based on a latest non-rigid 3D model retrieval benchmark and a
partial 3D model retrieval dataset as well, demonstrate the effectiveness and advantages
of our framework. It applies to two different, important and difficult retrieval scenarios
and improves the retrieval performances based on an adaptive integration strategy. The
idea is general and it can be applied to integrate three or more features for developing a
single algorithm for both non-rigid and partial 3D model retrieval, which is also among
our future work. Another interesting work is to test the performances of concatenating
our global and local feature vectors directly to form a hybrid feature vector by assign-
ing appropriate weights based on our Particle Swarm Optimization algorithm and then
perform a comparative evaluation with the retrieval algorithm proposed in the paper.
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